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The two-fluid description of a mesoscopic cylinder
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Abstract. Quantum coherence of electrons interacting via the magnetostatic coupling and confined to a
mesoscopic cylinder is discussed. The electromagnetic response of a system is studied. It is shown that the
electromagnetic kernel has finite low frequency limit what implies infinite conductivity. It means that part
of the electrons is in a coherent state and the system can be in general described by a two-fluid model. The
coherent behavior is determined by the interplay between finite size effects and the correlations coming
from the magnetostatic interactions (the interaction is considered in the mean field approximation). The
related persistent currents depend on the geometry of the Fermi surface. If the Fermi surface has some
flat portions the self-sustaining currents can be obtained. The relation of the quantum coherent state in
mesoscopic cylinders to other coherent phenomena is discussed.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 72.10.-d Theory of electronic
transport; scattering mechanisms

1 Introduction

The transport properties of mesoscopic metallic or semi-
conducting samples at low temperature have been shown
to exhibit features characteristic of the quantum coherence
of the electronic wave function along the whole sample, see
e.g. [1]. It is thus interesting to compare the characteris-
tics of mesoscopic systems with those for other coherent
systems.

The aim of the present work is to show that if we re-
duce the dimensions of a cylinder made of a normal metal
or a semiconductor to mesoscopic dimensions and if we
assume that electrons interact via the magnetostatic in-
teraction, a system exhibits coherent properties absent in
macroscopic samples.

Coherent systems like superfluids or superconductors
can be in general described by a two-fluid model namely
the total density n is equal to the sum of the densities of
the coherent nc and normal nn components

n = nc + nn. (1)

For macroscopic, nonsuperconducting systems (here after
refered as “normal”) nc = 0.

In this paper we discuss the electromagnetic response
and its static limit of a mesoscopic cylinder of very small
thickness d made of a normal metal or semiconductor. The
circumference and height of the cylinder are denoted by
Lx, Ly respectively (d� Lx, Ly).
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We argue that such mesoscopic cylinder can be in gen-
eral described by the two-fluid model. The coherent state
encountered here, although in principle different from the
superconducting state, exhibits the following properties
which bear resemblance to superconductors:

– free acceleration of part of electrons;
– strong diamagnetic susceptibility at low fields due to

the reduction of paramagnetic susceptibility;
– dynamic energy gap coming from magnetostatic cou-

pling of electrons;
– persistent currents in the presence of the static flux;
– flux trapping.

The relation between the induced current density
J(q, w) and the electric field E(q, w) is generally written
as

J(q, w) =
iK(q, w)

w
E(q, w). (2)

It is the form of the kernel K(q, w) that determines the
properties of the system both static as well as for finite
frequencies. The following limits imply

lim
w→0

lim
q→0

K(q, w) ≡ −χ 6= 0 infinite conductivity, (3)

lim
q→0

lim
w→0

K(q, w) 6= 0 Meissner effect. (4)

For normal electrons in macroscopic metallic or semicon-
ducting samples both limits are zero.

In this paper we calculate the conductivity σ(w) and
we study the first limit only as we are dealing with a nar-
row cylinder and we neglect the q dependence of the vector
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potential A. The results for a thick cylinder will be pre-
sented in a forthcoming paper.

We show that the relation (3) is fulfilled in the non-
superconducting mesoscopic cylinder and its magnitude
depends on the shape of the Fermi Surface (FS).

The reaction of a one-dimensional mesoscopic ring to
a static and time varying magnetic field and coupled to a
thermal bath has been investigated by Trivedi et al. [2].
They discussed using the Kubo linear response theory the
properties of the dynamic and static response function.
Such a one channel system is a simplification — exper-
imental samples have many transverse channels and the
question arises how do the system characteristics depend
on the transverse dimensions.

We extend the calculations of the conductivity of a
one-dimensional disordered ring [2] driven by the elec-
tromagnetic field to the system of cylinder geometry and
check whether coherence will still be maintained in a sys-
tem with many transverse channels.

We also discuss the orbital magnetic susceptibility and
show that it exhibits anomalous diamagnetism related to
the presence of a dynamic gap.

We further investigate persistent currents which arise
as a result of the flux sensitivity of energy levels. We dis-
cuss coherence of currents from different channels and the
magnitude of persistent currents for different shapes of the
FS.

In one of our recent papers [3] we discussed persistent,
paramagnetic currents in the free electron model with dif-
ferent shapes of the FS. The FS was assumed to be a
function of certain parameters which described a change
of its shape from circular to nearly quadratic. In this pa-
per we use the tight-binding model where different shapes
of the FS follow in a natural way from the crystal struc-
ture and band filling [4]. We discuss here, contrary to [3],
diamagnetic persistent currents.

Finally we address the issue of whether a system of
interacting electrons confined to a mesoscopic cylinder can
sustain a spontaneous persistent currents in the absence
of an externally applied flux. These currents correspond
to flux trapping in the cylinder.

2 Coherent properties of a mesoscopic
cylinder

Let us consider a system of spinless electrons constrained
to move on a hollow cylinder with M channels in the
height Ly and N sites with lattice spacing a in the circum-
ference Lx threated by the magnetic flux φ. We assume
that electrons interact via the long range magnetostatic
(curent-curent) interaction, the interaction is taken here
in the mean field approximation (MFA). The tight binding
Hamiltonian is of the form

H =
∑
nm

[(2t+ Vnm)c+nmcnm − te
iΘnn+1c+n+1mcnm +

−te−iΘnn+1c+nmcn+1m − tc
+
nm+1cnm − tc

+
nmcnm+1], (5)

where t = h̄2

2mea2 , Θ comes from the magnetic flux φ

Θnn+1 =
eaA

h̄c
=

eaφ

h̄cLx
=

eφ

h̄cN
, φ = LxA, (6)

A is the vector potential in the x direction. The flux φ is
composed of two parts

φ = φe + φI , φI = LI(φ), (7)

i.e. each electron moves in the external magnetic flux φe

and in the flux coming from the current I in the cylin-
der, L is the selfinductance coefficient. The second term
in equation (7) comes from the magnetostatic coupling.

For a clean sample (Vnm = 0) we can diagonalize the
Hamiltonian directly H ≡ Hxy = Hx +Hy

Hxy =
∑
kx

∑
ky

2t

×

[
1− cos

(
kxa−

eφ

h̄cN

)
− cos(kya)

]
nkxky , (8)

kx = kx(s, φ) =
2π

Na

(
s+

φ

φ0

)
, s = 0,±1, . . . , (9)

ky = ky(r) =
rπ

(M + 1)a
, r = 1, . . .M, (10)

ψsr(x, y) =

√
2

N(M + 1)
eikxx sin(kyy), (11)

Hxy|sr〉 = Esr|sr〉, (12)

Esr = 2t

[
1− cos

(
2π

N

(
s−

φ

φ0

))
− cos

(
rπ

M + 1

)]
≡ Es + Er. (13)

The eigenstates of equation (5) we denote by |α〉, these
are the eigenstates of the H with impurities which can be
diagonalized by computer calculations. Here we can treat
the effects of disorder in rough analogy to the effects of
temperature assuming that the elastic scattering causes
transitions between the states of the perfect system [5].
We can expand the eigenstates of disordered cylinder |α〉
in terms of those of the perfect cylinder |sr〉,

|α〉 =
∑
sr

aαsr|sr〉, aαsr = 〈sr|α〉, (14)

H|α〉 = Eα|α〉, ρ0 =
1

exp[β(H− µ)] + 1
,

ρ0|α〉 = fα|α〉, (15)

where fα = 1
exp[β(Eα−µ)]+1 is the FD distribution function,

µ is the chemical potential.
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In this paper we consider the case where the number
of electrons Nt is kept fixed and the chemical potential
depends on flux; µ ≡ µ(Nt, φ) can be calculated from the
equation

∑
α fα = Nt.

To introduce relaxation we assume a small coupling
exists between the cylinder and the thermal bath, with
the relaxation rate denoted by γ. Then following [2], by
use of the kinetic equation for the density matrix ρ̂(t) we
calculate the response of the system in the relaxation time
approximation. For details of the formalism see [2].

Now we apply a small time dependent flux δφ = LxδA,
where δA has only the tangential component. Denoting by
δH the corresponding change in the Hamiltonian we can
write

δH ≡ −
δφ

c
Îi = −

δφ

c
Îp −

1

2

(
δφ

c

)2

D̂, (16)

where Îi = Îp + Îd, Îi is the induced current operator.

Îp = i
eh̄

2meaLx

∑
nm

(eiΘnn+1c+n+1mcnm + h.c.). (17)

Îp is the operator of paramagnetic current, running along

the cylinder circumference, Îd is the diamagnetic current
operator

Îd = −
δφ

cL2
x

D̂,

D̂ =
e2

2me

∑
nm

(eiΘnn+1c+n+1mcnm + h.c.). (18)

Calculating by the second order perturbation theory the
changes in the energy caused by δH and comparing them
with the Taylor expansion of the energy we obtain impor-
tant relations

〈α|Îp|α〉 = −c
∂Eα
∂φ

, (19)

1

L2
x

〈α|D̂|α〉+ 2
∑
β

|〈α|Îp|β〉|2

Eα − Eβ
= c2

∂2Eα
∂φ2

. (20)

Calculating the current induced by the small time depen-
dent flux Ii = Tr Îiρ̂ we can find the conductivity σ(w)

J(w) =
Lx

V
Ii(w) = σ(w)E(w), (21)

where

E(w) =
iw

cLx
δφ. (22)

Making use of (19, 20) we get after some algebra

σ(w) =
L2
x

V

[
−
ic

w

∂I

∂φ
−

c2

γ − iw

∑
α

∂fα

∂φ

∂Eα
∂φ

+ i
∑
αβ

′ fα − fβ
Eα − Eβ

| 〈α | Îp | β〉 |2

Eα − Eβ − w − iγ

]
, (23)

where I is the equilibrium persistent current

I = Tr ρ0Îp = −c
∑
α

fα
∂Eα
∂φ

, (24)

V denotes the volume of the sample.
Up to now the formal calculations went in an analo-

gous way as in [2], the new physics appears as we perform
the summation about the transverse channels. The first
two terms in (23) are present only in mesoscopic multi-
ply connected structures where the energy levels are flux
sensitive. The first term, being purely imaginary, deter-
mines coherent response of the system. The second term
involves the intralevel scattering and depends essentially
on γ, the third term involves interlevel transitions and is
connected with the elastic scattering. In the absence of
the elastic scattering Îp is diagonal in the unperturbated
basis |sr〉 and the third term is zero. The ac conductivity
in a multichannel metallic ring in the diffusive regime has
been extensively discussed in [6].

In this paper we will focus our attention on the reactive
response in the static limit. We want to establish the con-
ditions under which the system exhibits strong coherent
behaviour.

Calculating the w = 0 limit of equation (23) we find

lim
w→0

w Imσ(w) = −
c

V

∂I

∂φ
. (25)

Thus the conductivity exhibits an imaginary part which in
the low frequency limit is proportional to the flux deriva-
tive of persistent current.

It follows from the basic theory of conductivity [7] that
coherent electrons i.e. those which run without scattering
obey the following relation

lim
w→0

w Imσ(w) =
nce

2

me
, (26)

where nc is the density of coherent electrons. From equa-
tions (2, 3, 21, 25) we find

lim
w→0

lim
q→0

K(q, w) ≡ −χ = −
c

V

∂I

∂φ
, (27)

or from (26)

χ = −
nce

2

me
. (28)

The finite limit of the kernel K(q, w) corresponds to free
acceleration of the part (≡ nc) of electrons — the feature
characteristic of superconductors.

Using the relation between σ(w) and χ(w) [8]

σ(w) = −
i

w
χ(w) (29)

we can calculate the static orbital susceptibility

χ = lim
w→0

χ(w) = lim
w→0

iwσ(w)

= − lim
w→0

wImσ(w) = −
nce

2

me
, (30)
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where relation (26) has been used.
We would like to stress that the equilibrium suscepti-

bility and the zero frequency limit of a dynamic response
coincide [9] as we are working with the constant number
of particles. From equations (20, 24, 27) we obtain

χ = χD + χp, (31)

where

χD = −
1

V

∑
α

fα〈α|D̂|α〉 = −
e2

me
n, (32)

χD is the diamagnetic susceptibility, n is the electron den-
sity

χp = −
L2
x

V

2
∑
αβ

fα
|〈α|Îp|β〉|2

Eα − Eβ
+ c2

∑
α

∂fα

∂φ

∂Eα
∂φ

 (33)

χp is the paramagnetic susceptibility.
Equations (30-32) give the following relation for χp

χp =
nne

2

me
, nn = n− nc. (34)

We see that nn is the density of normal electrons which
undergo different kinds of scattering processes. Both terms
in χp depend on the shape of the FS.

For a macroscopic “normal” sample the distance be-
tween energy levels is small and the occupation proba-
bility is then a smooth function of the energy. If is then
justified to replace the sum in equation (24) by an inte-
gral what leads to vanishing currents and to zero limit in
equation (27). Thus in macroscopic samples χp and χD

nearly cancel each other and the system displays only a
small residual diamagnetism.

However the mesoscopic cylinder with Lx ∼ 1 µm has
large energy spacings in x direction and the occupation
probability near FS changes significantly over these spac-
ings. The sum can not be then replaced by the integral
and we get a finite current I which is persistent at low
T because of Quantum Size Energy Gap (QSEG) [10,11].
The paramagnetic susceptibility is drastically reduced due
to the presence of the energy gaps and the system displays
an anomalous diamagnetism. This problem will be further
discussed in Section 3. We see that in mesoscopic system
the paramagnetic and diamagnetic susceptibilities fail to
cancel (n 6= nn) and we can describe the system by the
two-fluid model.

The density of coherent electrons nc is proportional to
the flux derivative of persistent current.

We shall discuss now the current I in more detail. Its
magnitude depends on the strength of the phase correla-
tions between currents of different channels.

A large phase correlation among channel currents
means that the increase of the flux φ results in an al-
most simultaneous cross of the FS by the large number
of channels. The most favorable situation takes place if
the separation between the last occupied level and the FS

from channel to channel is nearly the same. There exists
then a perfect correlation among the channel currents be-
cause the M levels cross the FS simultaneously while the
flux is changed by one fluxoid — we get then the largest
amplitude of the total current.

Let us assume that our mesoscopic cylinder contains
a small number of impurities. The average current, where
the average is taken over impurity configurations, can be
calculated in the linear response approach. For the M
channel system one obtains [12]

I(φ) ≈ exp

(
−
Lx

2λ

) M∑
r=1

±∞∑
s=0,±1

fsrIs, (35)

where

Is =
eh̄

meaLx
sin

2π

N
(s− φ

′

) s = 0,±1, . . .

φ
′

=
φ

φ0
, φ0 =

hc

e
, (36)

λ is the mean free path. For a sufficiently clean material
λ can be of the order of a few microns and the impurities
do not decrease the current significantly.

The current I(φ) is periodic in φ
′

with period 1 and
can be expressed as a Fourier sum [10]

I(φ) = exp

(
−
Lx

2λ

) M∑
m=1

∞∑
l=1

4T

πT ∗
2et

Nh̄

exp
(
− lT
T∗

)
1− exp

(
− 2lT
T∗

)
× sin

(
2πlφ

φ0

)
F (m), (37)

where λ is the mean free path, T ∗ is characteristic tem-
perature set by the level spacing at the Fermi surface for
an electron moving in the x direction,

F (m) = sin(kFx(m)a) cos(lNkFx(m)a), (38)

F (m) is the factor depending on a shape of the FS, kFx is
calculated from the equation for the FS.

In the tight-binding approximation the shape of the
FS depends on the lattice type and on the filling factor
[4].

For a 2D square lattice for the half-filled band the
equation for the FS reads

cos(akFx) + cos(akFy) = 0 (39)

and the equation for F (m) takes the form

F (m) = sin(arccos(− cos(akFy (m))))

× cos(lN arccos(− cos(akFy(m)))). (40)

The FS is than quadratic with the diagonals along kx, ky
axes.

For the filling factor much less than a half we can ex-
pand the cosines in the dispersion relation (13) for small
k-values and we obtain

Esr = 2t

[
1

2

(
2π

N

(
s−

φ

φ0

))2

−
1

2

(
rπ

M + 1

)2

− 1

]
≡ Es + Er. (41)
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Fig. 1. Persistent currents in I0 units (where I0 =
2et
Nh̄

sin(kFa)) versus flux for different shapes of the 2D Fermi
surfaces for T = 1.21 K, EF = 7 eV and Lx/Ly = 3. In the
inserted figure the shapes of the Fermi surfaces are shown.

The FS is then circular and equation (38) reads

F (m) = sin

2

√
1−

(
akFy(m)

2

)2


× cos

2lN

√
1−

(
akFy(m)

2

)2
 . (42)

We can also imagine a cylinder made of a set quasi 1D
mesoscopic rings stacked along y axis. The FS will be then
nearly flat perpendicular to kx direction and the formula
for the current is then of the form

I(φ) = exp

(
−
Lx

2λ

)
M

∞∑
l=1

4T

πT ∗
2et

Nh̄

exp
(
− lT
T∗

)
1− exp

(
− 2lT
T∗

)
× sin

(
2πlφ

φ0

)
sin(kFxa) cos(lNkFxa). (43)

In order to avoid perfect nesting in all figures we present
the results for slightly less than half filled bands instead
of half filled ones. The Fermi surfaces for such cases will
have then rounded corners.

In Figure 1 we present persistent currents for four dif-
ferent shapes of 2D FS (inserted figure). We see that the
amplitude of the current increases with increasing depar-
ture of the FS from circular because the phase correlation
of the channel currents increases.

We have found that for a 2D squared FS, drawn by
a solid line in the inserted figure, maximal interchannel
phase correlations exists for Lx

Ly
= 2 + n

3 , where n is a

positive integer. For other values of the ratio Lx/Ly the
current is much weaker.

The FS of the shapes as in the inserted figure are fre-
quently met in High Tc Superconductors with 2D conduc-
tion [13,14].

For a 3D case with P channels in the cylinder thickness
the current (24) takes a form

I(φ) = exp

(
−
Lx

2λ

) P∑
p=1

M∑
m=1

∞∑
l=1

4T

πT ∗
2et

Nh̄

exp
(
− lT
T∗

)
1− exp

(
− 2lT
T∗

)
× sin

(
2πlφ

φ0

)
F (m, p), (44)

where F (m, p) is a 3D factor depending on the shape of
the FS.

For a 3D cubic lattice for the half-filled band the equa-
tion for the FS is of the form

cos(akFx) + cos(akFy) + cos(akFz ) = 1 (45)

and we get the equation for F (m, p)

F (m, p) = sin(arccos(1− cos(akFy(m))− cos(akFz (p))))

× cos(lN arccos(1− cos(akFy (m))− cos(akFz (p)))).
(46)

The FS is then an octahedron with the diagonals along
kx, ky and kz axes.

For the filling factor much less than a half we can ex-
pand the cosines in relation (45) for small k-values and we
obtain

1−
(akFx)2

2
+ 1−

(akFy)2

2
+ 1−

(akFz )2

2
= 1 (47)

and F (m, p) takes a form

F (m, p) = sin

2

√
1−

(
akFy(m)

2

)2

−

(
akFz(p)

2

)2


× cos

2lN

√
1−

(
akFy(m)

2

)2

−

(
akFz(p)

2

)2
 . (48)

The FS is then spherical.
For a body-centered tetragonal lattice and the half-

filled band the equation for the FS takes a form

cos

(
akFx

2

)
cos

(
akFy

2

)
cos

(
ckFz

2

)
= 1 (49)

and F (m, p) is

F (m, p) = sin

2 arccos
1

cos
(
akFy (m)

2

)
cos
(
ckFz (p)

2

)


× cos

2lN arccos
1

cos
(
akFy (m)

2

)
cos
(
ckFz (p)

2

)
 . (50)

The FS is then a cuboid.
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Fig. 2. Diamagnetic persistent currents versus flux for dif-
ferent 3D lattices and slightly less than half filled band: cu-
bic (solid line), body-centered tetragonal (dotted line), face-
centered (dashed line) and cubic for filling factor much less
than 1 (dash-dotted line) for T = 1.21 K, EF = 7 eV and
Lx = 3.14 µm, Ly = 0.98 µm, Lz = 0.01 µm.

For a face-centered lattice we have the FS at half filled
band

cos

(
akFx

2

)
cos

(
akFy

2

)
+ cos

(
akFx

2

)
cos

(
akFz

2

)
+ cos

(
akFy

2

)
cos

(
akFz

2

)
= 1 (51)

and we obtain F (m, p) of the form

F (m, p) = sin

2 arccos
1− cos

(
akFy (m)

2

)
cos
(
akFz (p)

2

)
cos
(
akFy (m)

2

)
+ cos

(
akFz (p)

2

)


× cos

2lN arccos
1− cos

(
akFy (m)

2

)
cos
(
akFz (p)

2

)
cos
(
akFy (m)

2

)
+ cos

(
akFz (p)

2

)
 .

(52)

The FS is then a cube.
Persistent currents can be both paramagnetic and dia-

magnetic depending on the sample dimensions and on the
Fermi energy. Paramagnetic currents has been studied in
details in [3], in this paper we will discuss mainly the dia-
magnetic solutions.

In Figure 2 we present diamagnetic currents for differ-
ent 3D lattices.

All the above considerations show that the current in
a multichannel cylinder depends on the strength of the
interchannel correlations and therefore on the shape of
the FS.

In the case of the spherical (circular) FS the channel
currents add almost without phase correlation and the
total current is small, whereas for the FS being a cuboid

0.0 0.1 0.2 0.3 0.4 0.5
/ 0

-20000

0

20000

40000

60000

80000

I
/

I 0

T = 3.63 K
T = 2.90 K
T = 2.54 K
T = 2.18 K
T = 1.81 K
T = 1.21 K

Tc 3 K

oooo
o

Fig. 3. The graphical solution of a set of self-consistent equa-
tions (37, 7) for different temperatures and for body-centered
tetragonal lattice for EF = 8 eV and Lx = 3.14 µm, Ly =
0.94 µm, Lz = 0.02 µm. The nonzero crossings of the straight
line (7) with the current-flux characteristic (37) denoted by
circles correspond to flux trapped in mesoscopic cylinder.

(square) with rounded corners the correlation is almost
perfect and the total current is large.

It follows from (27, 28) that persistent currents are
carried by coherent electrons. Thus the shape of the FS
determines the density of coherent electrons nc in the sam-
ple and it increases with increasing the curvature of the
FS.

3 Self-sustaining currents

Finally we discuss the possibility of spontaneous self-
sustaining currents i.e. those which flow without any ex-
ternal field.

The magnetic flux which drives the persistent current
given by equation (37) is the sum of the externally applied
flux and the flux from the currents itself. The inductance
coefficient L depends on the sample geometry and can be
large for a cylinder geometry.

Equations (7, 37) form two selfconsistent equations for
the current and it raises the possibility of a spontaneous
self-sustaining current at the external flux zero. The pos-
sibility of the finite spontaneous current depends again
crucially on the shape of the FS.

The phenomenon of the self-sustaining currents is a
collective effect and it requires many electrons to support
the current at φe = 0. Therefore for a 2D cylinder with
d ∼ 1 Å we do not find any spontaneous current solutions.
To get it we have to consider the cylinder made of a set of
2D concentric cylindrical sheets or a 3D cylinder (in both
cases we keep d� R).

The graphical solutions of the self-consistent equations
(7) and (37) at φe = 0 are presented in Figures 3, 4 for
different shapes of the FS. The intersections of the two
curves marked by circles give the values of self-sustaining
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Fig. 4. The graphical solution of a set of self-consistent equa-
tions (37, 7) for different temperatures and for face-centered
lattice. for EF = 6 eV and Lx = 3.14 µm, Ly = 0.96 µm,
Lz = 0.03 µm. The nonzero crossings of the straight line (7)
with the current-flux characteristic (37) denoted by circles cor-
respond to flux trapped in mesoscopic cylinder.

currents. The temperature at which the transition to the
state with such currents occurs is denoted by Tc.

For diamagnetic currents presented in Figures 3 and 4
the self-sustaining currents correspond to flux trapping in
the cylinder — the phenomenon known in superconduc-
tivity.

It follows from our considerations that the self-
sustaining solutions are obtained only in samples where
the FS has flat regions. For spherical and nearly spherical
FS we do not obtain it because the density of coherent
electrons is too small.

There are two reasons for the presence of coherent elec-
trons in mesoscopic samples. At first the QSEG hampers
the scattering at low temperatures. At second as will be
shown below, the selfconsistent flux φI increases coherence
in the sample.

To be mostly transparent let us consider a cylinder
made of a set of quasi-one dimensional mesoscopic rings
stacked along certain axis for the filling factor much less
than 1. The energy spectrum (cf. (41)) of a single ring is
given by the formula

Es =
2h̄2π2

meL2
x

(s− φ
′

) s = 0,±1, . . . φ
′

= φ
′

e +
LI

φ0
. (53)

Assuming that each ring posses an odd number of elec-
trons we can calculate the energy gap at the FS, ∆ ≡
EsF+1 − EsF . We find

∆ = ∆0

(
1− 2φ

′

e + 2
L|I|

φ0

)
, (54)

where ∆0 = h2

2meL2
x
N is the QSEG.

We see that ∆ contains a term ∆d:

∆d ≡ ∆0
L|I|

φ0
, (55)

coming from the magnetostatic interactions among elec-
trons — ∆d is the dynamic part of the energy gap, which
has to be calculated in a self-consistent way.

If we calculate the energy of electrons in the cylinder
made of a set of M rings for φ

′
< 1/2 we find

E(φ
′

) = M
2h̄2π2

meL2
x

±sF∑
s=0,±1

(s− φ
′

)2 < E(φ
′

e), (56)

because φ
′

= φ
′

e + LI
φ0

< φ
′

e as the current is diamagnetic

for φ
′

< 1/2.
The gain in the energy in equation (56) may be called

the condensation energy due to orbital magnetic interac-
tions.

In case of an even number of electrons in each ring,
spontaneous flux φsp is created in a system [11]. φsp shifts
the energy levels and as a result a gap appears∆ = E−sF−
EsF .

One finds

∆ = ∆d = ∆0 · 2φ
′

sp, φsp = LIsp, (57)

Isp is the spontaneous current. This gap is dynamic, be-
cause it results from the collective action of all electrons
which produces spontaneous flux in order to minimize the
energy.

In both cases the flux coming from the currents pro-
duces a dynamic gap and therefore increases coherence of
electrons. This mechanism of gaining the energy is valid
only in mesoscopic systems as ∆d → 0 for ∆0 → 0. Similar
considerations can be performed for electrons moving on
a cylinder with the conclusion that the orbital magnetic
interactions (taken here in the MFA) increase coherence.

It can easily be seen from equation (33) that increase of
an energy gap results in a further depression of χp because
it decreases both terms in the formula for paramagnetic
susceptibility thus enhancing the coherent response of the
system.

This phenomenon is analogous to the reduction of the
paramagnetic susceptibility in superconductors and in or-
ganic molecules due to pair correlation [15].

4 Conclusions

It is already well established both theoretically [10] and
experimentally [16] that persistent currents which “never
decay” can flow in mesoscopic metallic or semiconducting
rings being a manifestation of quantum coherence. Such
currents were previously attributed solely to superconduc-
tors.

The question arises what are the similarities and dif-
ferences between the properties of mesoscopic systems and
superconductors [11,17]. Superconductivity is a collective
phenomenon and follows from an attractive interaction.
To compare the two phenomena we considered electrons
interacting via the orbital magnetic long range inte-
raction and moving on a thin-walled hollow cylinder.
The interaction, taken here in the MFA, means that each
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electron, besides the external flux φe feels a magnetic flux
φI coming from the currents. The selfinductance of the
one-dimensional loop is negligible [2], however, it can be
substantial for a system of cylindrical geometry.

We calculated the frequency dependent conductivity
and the electromagnetic kernel. The conductivity is
strongly related to the presence of persistent currents. We
have shown that

lim
w→0

lim
q→0

K(q, w) = −c
∂I

∂φ
· (58)

The finite limit of the kernel is equivalent to the infinite
conductivity. It is absent in macroscopic normal metals
and present in superconductors. Thus although both the
elastic and inelastic scattering was taken into account,
part of electrons (≡ nc) is in a coherent state and moves
without dissipation. This feature is connected with the
multiply connected structure of our cylinder where a
change of phase produced by the magnetic flux can not
be removed by a gauge transformation and results in an
equilibrium current I which is persistent at low tempera-
tures.

In a one-dimensional mesoscopic ring the current I is
simply a diamagnetic or paramagnetic reaction to the ex-
ternal flux φe and must vanish at φe = 0 [2]. The situation
looks different in a multichannel cylinder. We have shown
that the self-sustaining, persistent currents can exist at
φe = 0 in relatively clean samples (ballistic regime) and
for the FS which are sufficiently flat. The self-sustaining
solutions correspond to “orbital ferromagnetism” for para-
magnetic currents (this case was discussed in [3]) and to
flux trapping for diamagnetic currents — a feature char-
acteristic of superconductivity.

The coherent response and related quantities depend
on the sample dimensions and on the geometry of the FS.
We have shown that the magnitude of a persistent current
and of a dynamic and static response function depend on
the phase correlation of currents from different channels.
This correlation increases with increasing the curvature of
the FS. The Fermi Surfaces with flat regions follow in a
natural way in the tight-binding model.

The coherent response of a mesoscopic hollow cylinder
follows from two reasons. At first because of finite size the
energy spectrum is discrete and QSEG causes that the dia-
magnetic and paramagnetic parts of susceptibility fail to
cancel — this is connected with the single electron prop-
erties. At second the orbital magnetic interaction among
electrons leads to appearance of the dynamic gap and it
further increases coherence. It manifests e.g. in further de-
crease of the paramagnetic susceptibility and can lead to
the coherent collective phenomena such as “orbital ferro-
magnetism” or flux trapping.

It follows from our considerations that a mesoscopic
cylinder can be in general described by the two-fluid

model. The coherent behaviour is determined here by the
interplay between finite size effects and the correlations
coming from the orbital magnetic interaction. The energy
levels are periodic functions of the flux with period φ0 and
the minima of the total energy determine stable values of
flux contained in the cylinder. We will discuss it at related
problems in more detail in a subsequent paper.

We thank Dr. M. Szopa for useful discussions. Work was sup-
ported by Grant KBN PB 1108/P03/95/08.
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